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ABSTRACT

The paper gives a brief overview of work on atmospheric turbulence at DFVLR, and describes the research tools,
which include instrumented aircraft and numerical models. Some results of research on turbulence characteristics are given;
these are mostly in the convective boundary layer. The report discusses their application to the study of aircraft response and
airframe loadings.

Paper presented to the Sub-Committee on Flight of Flexible Aircraftin Turbulence, under the chairmanship of
Dr G.Coupry.

Ce rapport fournit une synthése des travaux effectués au DFVLR sur la turbulence atmosphérique, avec unc
description des moyens de recherche employés, qui comprennent des aéronefs équipés d'instruments et des modeéles
numériques. Quelques résultats de recherche sur les caractéristiques de la turbulence y sont indiqués; ceux-ci concernent
principalement la couche limite convective. Le rapport examine les possibilités des applications de ces résultats a I'étude de
la réponse des aéronefs et de leurs structures aux contraintes de la turbulence. Le rapport a été présenté au sous-comité pour
le vol des aéronefs a structure non-rigide en milieu turbulent, présidé par le Dr G.Coupry.
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covering aircraft and mmerical models are described. Same results on turbulence characterictics mostly
ﬁmc;:ectivabazﬂaqhyarmgivm,ardcheir\aetoraisztmspmseardloadsst\nmsm
lustrated.

1. INTRODUCTION

This report gives a brief overview on the status of atmospheric turbulence research mainly at the
Institute of Atmospheric Fhysics of the German Aerospace Rasearch Establishment (DFVIR) - with same
limited reference to work going on elsewhere. The knowledge of atmospheric turbulence, in particular in
lower altitudes, has advanced considerably due to both cbeervational and modeling studies. From the
available experimental and mmerical data a variety of simple models (analytical formilae) have been
derived. A recent and cosprehensive review of the state of the art with particular reference to
engineering applications is given by Panofsky and Dutton (1984).

The material presented may contribute to aircraft response and loads stidies in two ways: firstly,
to supply additional data sets from various altitude ranges and metecrological corditions, and
secondly, to provide a basis consisting of a theoretical framework and a complete data base for esting
different approaches (and possibly, to derive a unified procedure).

The psper oconsists of two main parts: one to introduce briefly the various researdh tools
available for atmospheric turbulence studies at DFVIR, and another to describe several results that are
believed to be of importance to aircraft response and loads studies.

2. RESEARCH TOOLS

The camplex nature of atmospheric turbulence (see Figure 1) makes it necessary to use a variety of
mmtmlsmamlmmﬂsynexgistxcappm The Institute of Atmospheric Physics uses
several research aircraft and scme numerical models. Figure 2 shows the different kinds of results that
can be obtained fram these tools.

2.1 Atmospher > research aircraft

The Institute of Atmospheric Mhysics is currently using eight research aircraft for various
metecrological programs. Among these a two engine jet aircraft Dassault Faloon E and three instrumented
ASK 16 powered gliders are fully (Falcon) or partly (motor gliders) equipped for the measurement of
atmospheric turbulence and wind.

Faloan

The two-engine jet is a high altitixde fast research aircraft instrumented for wind, turbulence and
cloud physics measurements and able to carry remote sensing equipment. A description of the aircraft
and same results of measurements are given by Fimpel (1987). A detailed marmual was compiled by
Meischner (1985). Figure 3 shows a side view with the locations of the sensors. Table 1 gives same
aircraft parameters. The following modifications have been made to the basic aircraft:

~ a noseboom of 1.8 m length for the installation of sensors in the least disturbed flow area,

~ an attachment point for external loads on the bottam of the fuselage, which can be used for travel
porhhxtisrmminly\sedfornsdmpletspec"m‘m,

- two photographic windows equipped with optical glass, 520 ma in diameter (alternatively, pressure
proof pods allow operation of sensors without windows),

~ four ports, 80 mu in diameter, in the top of the fuselage, which are used as inlets
forai:dmistryimtnmmtsarﬂpyrmi

~ asealablemzso\mxsmmmﬂelerttmdsideofmemselaqe (special windows for
optical and microwave remote sensors).

Part of the instrumentation for metecrological measurements is installed permanently, ancther part
is optional depending on the purpose of the specific mission. Table 2 gives an overview of the
instrumentation. Resolution and abenlute acouracy ~f “he main parameters are given i Iable 3.

The data are recorded by a fixed-wired POM unit. 160 chamnels are sampled with 10 Hz, 16 chammels
(for turbulence measurements) are sampled with 100 Hz each with a resolution of 12 bit. Measurement
speed for turbulence stidies is around 100 m/s. This gives a spatial resolution along the flight track
of 1 m or turbulence variables and of 10 m for others.
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Motor gliders

Due to their limited altitude range and payload the motor gliders ave primarily used in the
atmospheric boundary layer. A low flight speed enabling the resolution of very small scales on one hand
ardahiqhdegmeotﬂexibilitymtheoﬂmhmﬂmkesﬂmﬂaeidealmeard?platf.omevm_for
mlummm.mnmmumotmwmmqmmmmg\m
resolution, and this is achieved by the utilization of three identically aircraft.

The ASK 16 is a low-wing aircraft manufactured of wood and metal. Figure 4 illustrates the form
and dimensions of the aircraft. The aircraft has two seats, the second seat may also serve to install
additional equipment. Some aircraft parameters are given in Table 1.

All three aircraft possess identical instrumentation. A camplete description of the measurement
system and of data available fram several field experiments is given by Jochum et al. (1984), a short
survey by Jochum et al. (1987). Table 4 provides a list of equipment. 'meseaors‘fur temperature,
humidity and pressure are installed in and on the wing instrument pod. A pitot static tube protrudes
forward fram the point of the pod so that the total (static) pressure aperture(s) are 1440 (1311) mm
farward of the wing leading edge. The two accelerometers are installed in cilose vicinity of the center
of gravity. The two gyroe are mounted in the cockpit panel and are equipped with pick-offs for data
registration.

The speed range is between 75 kmy/h and 170 km/h. Measurement flights are comducted at
approximately 120 km/h. There, the linear approximation of the aircraft lift equation used in the
vertical wind calculation is valid.

The determination of vertical windspeed is hased on the aerodynamic method described by Lenschow
(1976) . The parameters needed in the aerodynamic lift equation for the powered gliders ASK 16 are given
by Hacker (1982). The method was extensively tested by flying special patterns (pilot-induced pitch and
roll oscillations) in calm air with negligible vertical motion. The results (Hacker, 1982) show that
the manceuvre—induced perturbations are sufficiently damped by the method. Table 5 shows an overview
over acouracies, resolution and scales attained under standard measurement flight conditions
(120 Jmy/h speed, 20-30 km flight legs).

A small digitalization system (MINIDIG) was developed at the Institute of Atmospheric Fhysics.
There are 16 channels available with a resolution of 12 bits each. The sampling rate can be selected at
.1, 1, 10 or 100 Hz. In general, data are recorded at 10 Hz (which is consistent with sensor response
times). Thus, a spatial resolution along the flight path of 3-4 m is obtained.

Data

In general, the time series of basic physical variables are low-pass filtered with a cut-off
frequency of 2 Hz (motor gliders) or 0.6 Hz (Falcon) (about 17 m) in order to eliminate high-frequency
noise.

The data from the differemt aircraft are combined to yield vertical profiles of mean values,
variances amd spectral characteristics.

Various methods have been employed to assess and maintain a high overall quality of data. For
details see the reports cited above. Willeke (1985) has analyzed intercomparison flights of ASK 16 and
Falcon and finds good agreement.

2.2 Nmerical models

Numerical models of different complexity have been developed at the Institute of Atmospheric
Ffhysics in order to simulate turbulence in the atmospheric boundary layer. A one—dimensional (1D) model
with third-order closure (Finger and Schmidt, 1986) is able to predict the statistical behavior of a
hoamogeneous convective boundary layer. It has prognostic equations for mean quantities and for
variances and covariances (second maments). A three-dimensional (3D) model computes directly the motion
of the large eddies and uses various parameterizations of the sub-grid scale turbulence (Schumann et
al., 1987). Poth models have been successfully compared to laboratory measurements (in a watertank) and
to aircratt cbeervations (Joctamn and Sdmidt, 1987).

The development of a 3D direct simulation model (resolving even the small turbulence scales) for
stable homogenecus shear flows (Gerz, 1987) serves mainly basic research purposes.

3. RESuLTS

There are various ways to describe turbulence. The two primcipally different approaches are
illustrated in Figure 2:

- one realization of the complete three-dimensional flow field
- statistical methods (involving same kind of averaging) are used to nbtain information about the
most probable behavior:
- sSpectral analysis allows determination of characteristic energy containing wavelengths, of
turbulence intensity, and of dissipation rates,
- probability distributions give additional information about skewness (third moment indicating
the relation between vigorous updrafts and weak downdrafts) and kurtosis (forth moment
characterizing the difference between peak gusts and mean variance).

Boxples of results dbtained from these different spproaches are given consecutively. They all
refer to the corvective boundary layer. There the daminant contrilbution to turbulence energy comes fram
the vertical velacity component, which therefore has been chosen for presentation. The height of the




convective boundary layer is defined as the level of the lowest temperature inversion and is denoted by
2.
‘Three~dimensional flow field

A three-dimensional mumerical model (Schwmann et al., 1987) has been used to simlate the details
of turbulent canvection. The mmerical grid size is reduced to the scale of turbulent eddies in the
irertial subrange. The bigger portion of the turbulent kinetic energy is resolved, whereas the subgrid
Meumlmmwdwmmdm.mwwmwmwgsmhdm

strong
dowrdrafts, whereas the velocities are generally small In the stable layer aloft. Figure 5b shows a
horizental x-y cross section through the middle of the baundary layer, which confirme the
picture of a few strong updrafts and many weak downdrafts.

Spectra

From the LES results vertical velocity spectra have been camparted at various heights. Figure 6
shows an example for z/z, = 0.5. There the inertial subrange exhibits the characteristic -5/3 slope
(von Karman spectrum). camputed energy containing wavelength at about 4, = 1.3 z, is in good
agreement with the cbservations. 1

Same authors have derived simple models (mostly analytic expressions) for spectra obtained from
extensive field experiments. Kaimal et al. (1976) for example give universal curves for velocity
spectra in terms of normalized coordinates. Figure 7 shows that vertical velocity spectra for different
rmmlizadhelghtramesz/ziconapseinboasmgleaxzveatﬂ'ehighfmmem whereas the
normalized peak wavelength i (low freqxem:ies) depends on normalized height, This height dqaeﬂane
is further illustrated in Fillure 8, where the dashed line represents the relationship (Caughey and
Palmer, 1979)

Aw _ - —4z _ 8z O]
z = 1.8(1 — exp( 3 .0003 exp(T))).

A further analytic expression for vertical velocity spectra in the lower half of the conmvective and
neutral boundary layer is given by Hojstrup (1982). Figure 9 shows the formula and the agreement with
measured data.

Prabability distributions

An example of measured vertical velocity probability distributions at different height levels is
given in Figure 10 (Joctums, 1985). There it is evident that the principal characteristics (variance,
skewness, lrtosis) are height dependent and in general non-Gaussian. The complete flow fields shown
partlymFigunesqaammguresﬂ-busoclearlyirdimtememg-cmmmmuneofmeverncu
velocity distribution for comwective turtulence. The third moment w’ (mimisamasmeofmg
as shown in Figure 11 as a function of normalized height attains a maximm value of about .25 w,
arourd the middle of the boundary layer (where the peak wavelength has a maximm, too).

Vertical velocity variance as a function of height is shown in Figure 12 (computed from two
different mmerical models) and Figure 13 (from cbservations). The analytical expression derived from
the cbservations (Wilczak and Phillips, 1986)

O

= {esrn - a2l @

is given by the solid line in Figure 13. The convective scaling velocity w, can be estimated from
routine meteorological data (van Ulden and Holtslag, 1985).

Figure 19 shows the good agreement between vertical velocity variance profiles obtained fram 3D LES
simulations and motorglider measurements.

4. APPLICATIONS TO ATRCRAFT RESPONSE

During all measurement flights vertical and horizontal accelerations of the aircraft have been
recorded as well. Even without knowing the aircraft’s response characteristics (from a system
jidentification) or the pilot induced movements (which are not yet measured), some conclusions about the

reaction of the aircraft in turbulent air can be drawn. Spectral anmalysis shows clearly that
the dominant turbulence wavelength has virtually no influence on the daminant response frequency which
is around 0.3-0.6 Hz at all heights (Figure 16) and with dominance of shear or buoyancy production
(Reinhaxdt, 1985). Imspection of probability distributions for the same datasets reveals marked
diffazences with changing height (Figure 17) or turbulence prodution mechanism (Figure 15) for
vartical wind velocity but virtually no differences for vertical aircraft acceleration.

The results of a different method of analysis are shown in Figure 18. There the contributions to
the total variance resulting fram different scale (or frequency) ranges are computed by appropriately
filtering the time series (Jochhm et al., 1987). Small scales represent turbulence of stochastic
charactar, intermediate scale sizes are organized structures up to the boundary layer depth scale, and
large scales refer tp eddy sizes larger than the boundary layer depth. Vertical velocity variance is
produced mainly by intermediate size scales, whereas vertical aircraft acceleration variance is
produced essentially by eml)l scales.




5. CONCIUSIONS AND OUTIOOK

A brief overview of atmospheric turlulence work at DFVIR has been presenmted. This work
wmmmlwunmwmmmamicmnm.m,mmmum

hamogeneous
few parameters which can be estimated from routine meteorological data. The acowracy of this
descripition is satisfactory for wany application purposes.

mmnmmamnwﬂeﬁtmﬂh\gMa@sﬂﬂmmh over camplex
terrain and in changing metecrological conditions. )bdeldevelqmsmmcmtmmgay:drmll finally
leadtoamu-smdalmﬂ:ozwramyardclans 'methzeemotutghde:sareptsewuycmpletedbyan
air motion sensing amd high-accuracy satellite positioning system. The Falcon jet will have a new
avionics and inertial reference system soon which is supposed to improve wind aad turbulence
measurements

maumftmmmlybemequmadwlmmmuqﬂnpuot-mmmvm and
a system identification is being performed. Dmﬂtmplmdwmcwofﬂwmmﬁ
in turbulent air can be measured. Analoguosly, models of the dynamic respanse are going to be added to
the existing mumerical models, so that the aircraft response can be ocamputed, and results of
ocomputations can be compared to measured data.
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ASK 16 Falcon
maximum take-off weight (MTOW) 765 kp 13 000 kp
permanently-installed equipment 70 kp included below
allowance for crew and fue! 200 kp £ 090 kp
range 700 km 1220 - 1680 km

(Jepends an altitude)
service ceiling 85C0 ft msl 42 000 ft

maximum rate of climb 2 mis at 100 km/h 10 m/s

Table 1.  Selected alrcraft specifications




permanently installed sensors are:

¢ Pressure and wind:
— Flow angle sensor Rosemount 858 J with
transducer Rosemcunt 1201 for absolute
(static) pressure and Rosemount 1221 for
differential (impact, angle of attack and
sideslip) pressures.
- Inertial navigation sytem Litton 72.
¢  Temperature:
— Two probes Rosemount 102 (fast and
slow),
®  Humiditiy:
— Dew point sensor General Eastern 1011.
— Relative Humidity sensor Vaiséld Humicap.
— Absolute Humiditiy sensor ERC Lyman a.
The Humicap and the Lyman a sensors are
mounted inside the fuselage in a tube. On its
inlet the housing the Rosemount temperature
sensor is fixed. Close to the humidity sensors
the temperature and the pressure are meas-
ured in the tube. Sc the influences of the heat-
ing of the air and the rise of the pressure in the
tube of the humidity measurements can be cor-
rected.
¢ Liquid water content:
— Cloud technology (Johnson-Williams) Sen-
sor CT-10.

Optional sensars are:

¢ Radiation:
— Pyranometer Eppley PSP (upward and
downward).
— Pyrgeometer Eppley PIR (upward and
downward).
— Radiometer Barnes PRT6 (downward).
®  Cloud Physics:
— Droplet spectrometer PMS £SSP-100.
= Droplet spectrometer PMS OAP-230X.
— Liquid water content sensor PMS CSIRO-
King.
®  Agerosol Lidar:
— Airborne Lidar System DFVLR ALEX-F1.

Temperatures

s reverse flow temperature probe (Pt 100 manu-
factured in-house)
* Pt 100 in humidity channe! (nanufactured in-

house)

* Barnes PRT-5 radiation thermometer (one air-
craft only)

Humidity

® ERC Lyman-alpha hygrometer
®  Vaiséla humicap relative humidity sensor

Pressure

* Rosemount static and dynamic transducers for
pitat static tube

Aircraft motion

¢  Sundstrand accelerometer (2)
e  SFENA vertical gyro (pitch and roll angle)
®  AIM directional gyro {(heading)

Video camera(s} looking forward and/or downward
(optional)

Table 4.

Instrumentation ASK 16
{from Jochum et al.,1987)

r:elaﬁve accuracy of derived quantities

potential temperature + 07K
specific humidity + .05 g/kg
vertical wind speed °) + 2mis

height

*) inctudes only errors of input parameters

+ 20 m (abs))

Table 2. Instrumentation Falcon (from Fimpel, 1987)

horizontal resolution 33 m
16.5m - 3.3 km
30 m ag! - 2.5 km msl|

scales

altitude range

Table 5.

absolute accuracy of main parameters

Parameter Resolution Accuracy
Static pressure +0.12 +1.5 hPa
Impact pressure +0.08 +1.2 hPa
Temperature +0.02 +05K
Relative humidity 10.02 +20 %
Absolute humidity +0.1 +0.7 g/m?
Horizontal wind components  *) +50 m/s
Vertical wind component ) +0.8 m/s
)} Computed from several parameters
horizontal resolution im
scales 55m-5km

altitude range 30 m agl - 12 km msl

Table 3. Standard data characteristics Falcon

(from Meischner, 1985)

Standard data characteristics ASK 16
(from Jochum et al., 1987)




Figure 1.

Turbulence structure of the atmosphuric bo:ndary layer:

schematic view

{from Wyngaard, 1986) of (a) the corvective boundary layer capped by an
inversion and (b) the stably stratified nocturna' boundary layer.
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Figure 3.

13: Droplet spectrometer
and CSIRO-King LWC

Tools In atmospheric turbulence research.

Faicon with instrumentation (from Fimpel, 1987).

aircraft or tower
(line / time average)
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recractadie landing eear

sdditionei teak

Figure 4.  ASK 16 with Instrumentation (from Jochum et al., 1987).
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Figure 5. Vertical velocity component w: (a) in an x-z cross section {from Schumann
et al,, 1987); isoline increment 0.5w; solid (dashed) lines represent positive
{negative) values. {b) x-y cross section at 0.62z, solid (dashed) lines denote
updrafts (downdrafts); isoline increment .002m/s. (Schmidt, 1987, personal
communication).
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Figure 6. Vertical velocity spectrum from LES simulation at 0.6z, (from Schumann et
al., 1987); solid (dashed) lines denote computed (measured in a watertank)
values.
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is given by relationship (2), the heavy dashed
line represents observations.
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Figure 16. Measured spectra of vertical wind (left) and vertical acceleration of air-
craft (right): height dependence.




oben f |4
8z, . !

Mitte /#\‘_
.Sz, 1%

4 e
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